

CONTROL OF THE RICE ROOT-KNOT NEMATODE MELOIDOGYNE GRAMINICOLA USING RICE PLANTS AS TRAP CROPS

<u>Torrini G.</u>¹, Sacchi S.², Marianelli L.¹, Mazza G.¹, Fumagalli A.³, Cavagna B.³, Roversi P.F.¹, Ciampitti M.³

¹CREA Research Centre for Plant Protection and Certification, 50125 Firenze, Italy;

²Fondazione Minoprio Phytopathological Laboratory. Vertemate Con Minoprio, Como (Italy);

³Lombardy Region - DG Agricoltura Servizio Fitosanitario Regionale, Milan (Italy)

Meloidogyne graminicola

Meloidogyne graminicola is one of the most important damaging nematodes for rice cultivation throughout the world.

2016

First interception in EPPO Countries

MATERIAL AND METHODS

Five plots for three different management approaches were staked out:

- Uncultivated (U)

- Control (C): rice was sown and left to grow until the end of the three cycles in treated plots.
- Treated (T): three separate cycles of rice production where plants were sown and destroyed each time at the second leaf stage.

Evaluation of Nematode Density in the Soil

Time	Pairwaise comparisons	Р
то	C vs U	0.698
то	C vs T	0.603
T0	U vs T	0.350
T1	C vs U	0.769
T1	C vs T	0.002
T1	U vs T	0.001

Evaluation of the Plant Population Density

Evaluation of the Root-Gall Index and the Plant Growth

